1. How does HIV adsorb to host cells?

A. Gp120 on HIV adsorbs to a CD4 molecule on the host cell, then gp41 adsorbs to a chemokine receptor.

B. Gp120 on HIV first adsorbs to a CD4 molecule on the host cell, then to a chemokine receptor.
2. HIV primarily infects:

A. T4-lymphocytes, macrophages, and dendritic cells.
B. T4-lymphocytes, endothelial cells, and epithelial cells.
C. T4-lymphocytes, red blood cells, and neurons.
3. HIV enters T4-lymphocytes by gp41-mediated:

A. endocytosis.
B. exocytosis.
C. budding.
D. fusion of the viral envelope with the host cell’s cytoplasmic membrane.
4. HIV reverse transcriptase makes:

A. an RNA copy of the HIV genome.
B. a DNA copy of the HIV RNA genome.
C. a double-stranded RNA copy of the single-stranded HIV RNA genome.
5. The HIV enzyme integrase inserting the double-stranded DNA intermediate of HIV into a host cell chromosome describes:

A. How HIV replicates.
B. How HIV kills T4-lymphocytes
C. How HIV forms a provirus.
6. Most HIV genes are transcribed into mRNA molecules coding for:

A. Individual HIV structural proteins.
B. HIV polyproteins.
C. HIV tRNA molecules.
D. HIV toxins.
7. HIV Env polyprotein is cleaved by protease into:

A. gp120 and gp41.
C. integrase and reverse transcriptase.
8. HIV proteases function to:

A. degrade host cell proteins.
B. insert HIV DNA into host cell chromosomes.
C. cleave HIV polyproteins into individual, functional proteins.
9. The HIV genome consists of:

A. two molecules of single-stranded RNA.
B. one molecule of double stranded DNA.
C. one molecule of single stranded DNA.
D. one molecule of double-stranded RNA.
10. Most maturation of HIV occurs:

A. in the host cell’s nucleus.
B. in the host cell’s cytoplasm.
C. during or after budding from the host cell.
D. in the ER of the host cell.