1. ___________ slows blood flow at the infection site to give more opportunity for leukocytes to adhere to the walls of the capillary and squeeze out into the surrounding tissue.

A. Constriction of endothelial cells resulting in vasodilation
B. Constriction of smooth muscles around larger blood vessels
C. Enhanced attachment or opsonization
2. During inflammation, selectins function to:

A. Attract phagocytes to the infection site by chemotaxis.
B. Enable the leukocytes to roll along the inner wall of venules.
C. Bind leukocytes firmly to adhesion molecules on the inner wall of venules.
3. During inflammation, integrins function to:

A. Attract phagocytes to the infection site by chemotaxis.
B. Enable the leukocytes to roll along the inner wall of venules.
C. Bind leukocytes firmly to adhesion molecules on the inner wall of venules.
4. During inflammation, diapedesis functions to:

A. Enable antibody molecules to leave the blood and enter the tissue.
B. Enable complement proteins to leave the blood and enter the tissue.
C. Enable plasma to leave the blood and enter the tissue.
D. Enable phagocytes, inflammatory cells, and cytotoxic T-lymphocytes to leave the blood and enter the tissue.
5. ____________ play(s) an important role in heart disease, Alzheimer's disease, diabetes, cancer, and tissue destruction from infections.

A. Acute inflammation
B. Chronic inflammation
C. Viruses
D. Antigen-antibody reactions
6. Which is NOT a benefit of plasma leakage into the tissue during inflammation?

A. Leukocytes leave the blood and enter the tissue.
B. Antibody molecules leave the blood and enter the tissue.
C. Complement proteins to leave the blood and enter the tissue.
D. Nutrients leave the blood and enter the tissue.